Factoring $x^2 + bx + c$

Ocommon Core State Standards

A-SSE.A.1a Interpret parts of an expression, such as terms, factors, and coefficients.

MP 1, MP 3, MP 4, MP 7, MP 8

Objective To factor trinomials of the form $x^2 + bx + c$

PRACTICES Essential Understanding You can write some trinomials of the form $x^2 + bx + c$ as the product of two binomials.

To understand how, consider the product of binomials below.

$$(x+3)(x+7) = x^2 + (7+3)x + 3 \cdot 7 = x^2 + 10x + 21$$

The coefficient of the trinomial's x^2 -term is 1. The coefficient of the trinomial's x-term, 10, is the *sum* of the numbers 3 and 7 in the binomials. The trinomial's constant term, 21, is the *product* of the same numbers, 3 and 7. To factor a trinomial of the form $x^2 + bx + c$ as the product of binomials, you must find two numbers that have a sum of b and a product of c.

 $= x^2 + 8x + 15$ 🖌

Got If? 1. What is the factored form of $r^2 + 11r + 24$?

What is the factored form of $x^2 + 8x + 15$?

Check $(x+3)(x+5) = x^2 + 5x + 3x + 15$

List the pairs of factors of 15. Identify the pair that has a sum of 8.

 $x^{2} + 8x + 15 = (x + 3)(x + 5)$

Factors of 15	Sum of Factors
1 and 15	16
3 and 5	8 🖌
and the second se	and the second se

What is an easy way to organize your factoring? Use a table to list the pairs of factors of the constant term c and the sums of those pairs of factors.

Why look at pairs

of 24?

sum.

of negative factors

You want the factors of 24 with a sum of -11. Only two negative numbers have a positive product and a negative

Some factorable trinomials have a negative coefficient of x and a positive constant term. In this case, you need to inspect the negative factors of c to find the factors of the trinomial.

Problem 2 Factoring $x^2 + bx + c$ Where b < 0, c > 0

What is the factored form of $x^2 - 11x + 24$?

List the pairs of negative factors of 24. Identify the pair that has a sum of -11.

Factors of 24	Sum of Factors
-1 and -24	-25
-2 and -12	-14
-3 and -8	-11 🗸
-4 and -6	-10
	The second

 $x^2 - 11x + 24 = (x - 3)(x - 8)$

Check
$$(x-3)(x-8) = x^2 - 8x - 3x + 24$$

= $x^2 - 11x + 24$

Got It? 2. a. What is the factored form of $y^2 - 6y + 8$? **b.** Reasoning Can you factor $x^2 - x + 2$? Explain.

When you factor trinomials with a negative constant term, you need to inspect pairs of positive and negative factors of c.

Problem 3 Factoring $x^2 + bx + c$ Where c < 0

What is the factored form of $x^2 + 2x - 15$?

Identify the pair of factors of -15 that has a sum of 2.

Factors of -15	Sum of Factors
1 and -15	-14
-1 and 15	14
3 and -5	-2
-3 and 5	2 🗸

 $x^{2} + 2x - 15 = (x - 3)(x + 5)$

Got It? 3. What is the factored form of each polynomial? **a**. $n^2 + 9n - 36$ **b.** $c^2 - 4c - 21$

Think What's another way to do this problem? Find two positive factors

of 15 that differ by 2. The factors are 3 and 5. Then attach a negative sign to one of the factors so that their sum is positive. You get -3 and 5.

PowerAlgebra.com

Problem 4 Applying Factoring Trinomials

Geometry The area of a rectangle is given by the trinomial $x^2 - 2x - 35$. What are the possible dimensions of the rectangle? Use factoring.

Know The area of the rectangle	Possible dimensions of the rectangle	Area = length \times width, so factor the trinomial for area as the product of binomials that represent the length	
To factor $x^2 - 2x - 35$, identify the pair of factors of -35 that has a sum of -2 .		Factors of -35 Sum of Factors	
		1 and 25	34
			J4
		5 and -7	-2 🗸
		-5 and 7	2
$x^2 - 2x - 35 = (x + 5)(x + $	κ−7)		
		- 1	

So the possible dimensions of the rectangle are x + 5 and x - 7.

Got lt? 4. A rectangle's area is $x^2 - x - 72$. What are possible dimensions of the rectangle? Use factoring.

You can also factor some trinomials that have more than one variable. Consider the product (p + 9q)(p + 7q).

$$(p+9q)(p+7q) = p^2 + 7pq + 9pq + 9q(7q)$$

= $p^2 + 16pq + 63q^2$

This suggests that a trinomial with two variables may be factorable if the first term includes the square of one variable, the middle term includes both variables, and the last term includes the square of the other variable.

Problem 5 Factoring a Trinomial With Two Variables

What is the factored form of $x^2 + 6xy - 55y^2$?

List the pairs of factors of -55. Identify the pair that has a sum of 6.

Factors of -55	Sum of Factors
1 and -55	-54
-1 and 55	54
5 and -11	-6
-5 and 11	6 🖌

 $x^2 + 6xy - 55y^2 = (x - 5y)(x + 11y)$

Got lt? 5. What is the factored form of $m^2 + 6mn - 27n^2$?

Is this problem similar to one you've seen before? Yes. This problem is similar to factoring a trinomial in one variable of the form $x^2 + bx + c$, where c < 0.

Lesson Check

Do you know HOW?

Factor each expression. Check your answer.

- 1. $x^2 + 7x + 12$ 2. $r^2 - 13r + 42$ 3. $p^2 + 3p - 40$ 4. $a^2 + 12ab + 32b^2$
- 5. The area of a rectangle is given by the trinomial $n^2 3n 28$. What are the possible dimensions of the rectangle? Use factoring.

Do you UNDERSTAND?

Tell whether the sum of the factors of the constant term should be *positive* or *negative* when you factor the trinomial.

6.
$$s^2 + s - 30$$

7. $w^2 + 11w + 18$

8.
$$x^2 - x - 20$$

9. Reasoning Under what circumstances should you look at pairs of negative factors of the constant term when factoring a trinomial of the form $x^2 + bx + c$?

Practice and Problem-Solving Exercises OPRACTICES

			-	
Practice	Complete.		40	See Problems 1 and 2.
	10. $k^2 + 5k + 6 = (k + 2)(k + 1)$		11. $x^2 - 7x + 10 = (x - 5)(x - 5)$	
	12. $t^2 - 10t + 24 = (t - 4)(t - \blacksquare)$		13. $v^2 + 12v + 20 = (v + 10)^2$)(v + ■)
	Factor each expression. Check you	ur answer.		
	14. $y^2 + 6y + 5$	15. $t^2 + 10t + 16$	16. $x^2 + 1$	5x + 56
	17. $n^2 - 15n + 56$	18. $r^2 - 11r + 24$	19. $q^2 - 8$	q + 12
	Complete.			🌗 See Problem 3.
	20. $q^2 + 3q - 54 = (q - 6)(q + m)$		21. $z^2 - 2z - 48 = (z - 8)(z - 8$	+ 💷)
	22. $n^2 - 5n - 50 = (n + 5)(n - \infty)$		23. $y^2 + 8y - 9 = (y + 9)(y + 9)$	-■)
	Factor each expression. Check you	ur answer.		
	24. $r^2 + 6r - 27$	25. $w^2 - 7w - 8$	26. $z^2 + 2$	z-8
	27. $x^2 + 5x - 6$	28. $v^2 + 5v - 36$	29. $n^2 - 3$	3n - 10
STEA	30. Carpentry The area of a rectar What are the possible dimension	ngular desk is giver ons of the desk? Us	by the trinomial $d^2 - 7d - 3$ se factoring.	18. 🔹 See Problem 4.

31. Design The area of a rectangular rug is given by the trinomial $r^2 - 3r - 4$. What are the possible dimensions of the rug? Use factoring.

Choose the correct factored form for	or each expression.	See Problems
32. $k^2 + 5kn - 84n^2$	A. $(k-7n)(k-12n)$	B. $(k-7n)(k+12n)$
33. $p^2 - 8pq - 33q^2$	A. $(p+3q)(p-11q)$	B. $(p - 3q)(p + 11q)$
34. $x^2 - 16xy + 48y^2$	A. $(x - 4y)(x + 12y)$	B. $(x - 4y)(x - 12y)$

Factor each expression.

35. $r^2 + 19rs + 90s^2$	36. $g^2 - 12gh + 35h^2$	37. $m^2 - 3mn - 28n^2$
38. $x^2 + 3xy - 18y^2$	39. $w^2 - 14wz + 40z^2$	40. $p^2 + 11pq + 24q^2$

Apply **(a)** 41. Writing Suppose you can factor $x^2 + bx + c$ as (x + p)(x + q).

- **a.** Explain what you know about p and q when c > 0.
- **b.** Explain what you know about *p* and *q* when c < 0.

🞯 42. Error Analysis Describe and correct the error made in factoring the trinomial.

- **6** 43. Think About a Plan The area of a parallelogram is given by the trinomial $x^2 - 14x + 24$. The base of the parallelogram is x - 2. What is an expression for the height of the parallelogram?
 - What is the formula for the area of a parallelogram?
 - How can you tell whether the binomial that represents the height has a positive or negative constant term?
 - **44.** Recreation A rectangular skateboard park has an area of $x^2 + 15x + 54$. What are the possible dimensions of the park? Use factoring.

Write the standard form of each polynomial modeled below. Then factor each expression.

Factor each expression.

49. $x^2 + 27x + 50$	50. $g^2 - 18g + 45$	51 . $k^2 - 18k - 63$
52. $d^2 + 30d - 64$	53. $s^2 - 10st - 75t^2$	54. $h^2 + 9hj - 90j^2$

ge Factor each trinomial.

Challenge

SAT/ACT

Short

Response

Sample $n^6 + n^3 - 42 = (n^3)^2 + n^3 - 42$ = $(n^3 - 6)(n^3 + 7)$ 55. $x^{12} + 12x^6 + 35$ 56. $t^8 + 5t^4 - 24$ 57. $r^6 - 21r^3 + 80$ 58. $m^{10} + 18m^5 + 17$ 59. $x^{12} - 19x^6 - 120$ 60. $p^6 + 14p^3 - 72$

Standardized Test Prep

61. What is the factored form of $x^2 + x - 42$? (A) (x-7)(x-6)(x+7)(x-6) (x+7)(x+6)**B** (x-7)(x+6)**62.** What is the solution of the equation 6x + 7 = 25? (\mathbb{H}) 5 $\frac{1}{3}$ **(F)** 2 **G** 3 $\bigcirc 8$ 63. A museum charges an admission price of \$12 per person when you buy tickets online. There is also a \$5 charge per order. You spend \$65 purchasing p tickets online. Which equation best represents this situation? (A) 12p + 5 = 65**B** 5p + 12 = 65 \bigcirc 12p - 5 = 65 **(D)** 65p + 12 = 564. You and your friend bike to school at the rates shown. Who is faster? Show your work. Your friend: 11 ft/s **Mixed Review**

Simplify each product.
 See Lesson 8-4.

 65.
$$(c + 4)^2$$
 66. $(2v - 9)^2$
 67. $(3w + 7)(3w - 7)$

 Solve each equation for x.
 69. $8(x - d) = x$
67. $(3w + 7)(3w - 7)$
68. $\frac{a}{b} = \frac{x}{d}$
69. $8(x - d) = x$
70. $m = \frac{(c + x)}{n}$
64. Get Ready! To prepare for Lesson 8-6, do Exercises 71–73.
 70. $m = \frac{(c + x)}{n}$

 Find the GCF of the terms of each polynomial.
 5ee Lesson 8-2. 71. $14x^2 + 7x$
72. $24x^2 - 30x + 12$
73. $6x^3 + 45x^2 + 15$

Lesson 8-5

Factoring $x^2 + bx + c$

PowerAlgebra.com

517