Chapter Review

Connecting BIG ideas and Answering the Essential Questions

1 Functions

A function is a relationship that pairs one input value with exactly one output value. You can use words, tables, equations, sets of ordered pairs, and graphs to represent functions.

Patterns and Functions (Lessons 4-2 and 4-3)

Linear

Nonlinear

Function Notation and Sequences (Lessons 4-6 and 4-7)

n	A(n) = 3 + (n-1)(2)	A(n)
1	3 + (1 - 1) (2)	3
2	3+(2-1)(2)	5
3	3+(3-1)(2)	7
4500		

2 Modeling

You can use functions to model real-world situations that pair one input value with a unique output value.

Using Graphs to Relate Two Quantities (Lesson 4-1)

Graphing a Function Rule (Lesson 4-4)

 $A = s^2$

Writing a Function Rule (Lesson 4-5)

$$C = \frac{1}{4}n + 6$$

Chapter Vocabulary

- arithmetic sequence, p. 275
- common difference, p. 275
- continuous graph, p. 255
- dependent variable, p. 240
- discrete graph, p. 255
- domain, p. 268
- explicit formula, p. 276

- function, p. 241
- function notation, p. 269
- input, p. 240
- independent variable, p. 240
- linear function, p. 241
- nonlinear function, p. 246
- output, p. 240

- range, p. 268
- recursive formula, p. 275
- relation, p. 268
- sequence, p. 274
- term of a sequence, p. 274
- vertical line test, p. 269

Choose the correct term to complete each sentence.

- **1.** If the value of a changes in response to the value of b, then b is the ?.
- **2.** The graph of a(n)? function is a nonvertical line or part of a nonvertical line.
- 3. The ? of a function consists of the set of all output values.

4-1 Using Graphs to Relate Two Quantities

Quick Review

You can use graphs to represent the relationship between two variables.

Example

A dog owner plays fetch with her dog. Sketch a graph to represent the distance between them and the time.

Exercises

- 4. Travel A car's speed increases as it merges onto a highway. The car travels at 65 mi/h on the highway until it slows to exit. The car then stops at three traffic lights before reaching its destination. Draw a sketch of a graph that shows the car's speed over time. Label each section.
- 5. Surfing A professional surfer paddles out past breaking waves, rides a wave, paddles back out past the breaking waves, rides another wave, and paddles back to the beach. Draw a sketch of a graph that shows the surfer's possible distance from the beach over time.

4-2 Patterns and Linear Functions

Quick Review

A function is a relationship that pairs each input value with exactly one **output** value. A linear function is a function whose graph is a line or part of a line.

Example

The number y of eggs left in a dozen depends on the number x of 2-egg omelets you make, as shown in the table. Represent this relationship using words, an equation, and a graph.

Number of Omelets Made, x	0	1	2	3
Number of Eggs Left, y	12	10	8	6

Look for a pattern in the table. Each time x increases by 1, y decreases by 2. The number y of eggs left is 12 minus the quantity 2 times the number x of omelets made: y = 12 - 2x.

Exercises

For each table, identify the independent and dependent variables. Represent the relationship using words, an equation, and a graph.

7.

6. Paint in Can

1

2

3

Number of Chairs Painted, p	Paint Left (oz), <i>L</i>	Number Snacks Purchase
0	128	0

98

68

38

Snacks Purchased, s	Total Cost, C
0	\$18
1	\$21
2	\$24
3	\$27

Game Cost

8. Elevation

Number of Flights of Stairs Climbed, n	0	1	2	3
Elevation (ft above sea level), E	311	326	341	356

4-3 Patterns and Nonlinear Functions

Quick Review

A nonlinear function is a function whose graph is *not* a line or part of a line.

Example

The area A of a square field is a function of the side length s of the field. Is the function *linear* or *nonlinear*?

Side Length (ft), s	10	15	20	25
Area (ft²), A	100	225	400	625

Graph the ordered pairs and connect the points. The graph is not a line, so the function is nonlinear.

Exercises

Graph the function shown by each table. Tell whether the function is *linear* or *nonlinear*.

12.

10.	X	у
	1	0
	2	4.5
	3	9
	4	13.5
1	4	

11.	X	у
	1	2
4	2	6
dille	3	12
	4	72

4-4 Graphing a Function Rule

Quick Review

A **continuous graph** is a graph that is unbroken. A **discrete graph** is composed of distinct, isolated points. In a realworld graph, show only points that make sense.

Example

The total height h of a stack of cans is a function of the number n of layers of 4.5-in. cans used. This situation is represented by h = 4.5n. Graph the function.

n	h
0	0
1	4.5
2	9
3	13.5
4	18

The graph is discrete because only whole numbers of layers make sense.

Exercises

Graph the function rule. Explain why the graph is continuous or discrete.

- **13. Walnuts** Your cost c to buy w pounds of walnuts at \$6/lb is represented by c = 6w.
- **14.** Moving A truck originally held 24 chairs. You remove 2 chairs at a time. The number of chairs n remaining after you make t trips is represented by n = 24 2t.
- **15. Flood** A burst pipe fills a basement with 37 in. of water. A pump empties the water at a rate of 1.5 in./h. The water level ℓ , in inches, after t hours is represented by $\ell = 37 1.5t$.
- **16.** Graph y = -|x| + 2.

4-5 Writing a Function Rule

Quick Review

To write a function rule describing a real-world situation, it is often helpful to start with a verbal model of the situation.

Example

At a bicycle motocross (BMX) track, you pay \$40 for a racing license plus \$15 per race. What is a function rule that represents your total cost?

total cost = license fee + fee per race • number of races
$$C = 40 + 15 • r$$

A function rule is $C = 40 + 15 \cdot r$.

Exercises

Write a function rule to represent each situation.

- **17. Landscaping** The volume V remaining in a 243- ft^3 pile of gravel decreases by 0.2 ft^3 with each $\mathrm{shovelful}$ s of gravel spread in a walkway.
- **18. Design** Your total cost C for hiring a garden designer is \$200 for an initial consultation plus \$45 for each hour h the designer spends drawing plans.

4-6 Formalizing Relations and Functions

Quick Review

A **relation** pairs numbers in the **domain** with numbers in the **range**. A relation may or may not be a function.

Example

Is the relation $\{(0, 1), (3, 3), (4, 4), (0, 0)\}$ a function?

The *x*-values of the ordered pairs form the domain, and the *y*-values form the range. The domain value 0 is paired with two range values, 1 and 0. So the relation is not a function.

Exercises

Tell whether each relation is a function.

19.
$$\{(-1,7), (9,4), (3,-2), (5,3), (9,1)\}$$

20.
$$\{(2,5), (3,5), (4,-4), (5,-4), (6,8)\}$$

Evaluate each function for x = 2 and x = 7.

21.
$$f(x) = 2x - 8$$

22.
$$h(x) = -4x + 61$$

23. The domain of t(x) = -3.8x - 4.2 is $\{-3, -1.4, 0, 8\}$. What is the range?

4-7 Arithmetic Sequences

Quick Review

A **sequence** is an ordered list of numbers, called terms, that often forms a pattern. A sequence can be represented by a **recursive formula** or an **explicit formula**.

Example *

Tell whether the sequence is arithmetic.

The sequence has a common difference of —3, so it is arithmetic.

Exercises

For each sequence, write a recursive and an explicit formula.

For each recursive formula, find an explicit formula that represents the same sequence.

28.
$$A(n) = A(n-1) + 3$$
; $A(1) = 4$

29.
$$A(n) = A(n-1) + 11$$
; $A(1) = 13$

30.
$$A(n) = A(n-1) - 1$$
; $A(1) = 19$