

Functions

1. Vocabulary Review What is the variable in the expression 3a + 7?

Evaluate each expression for v = 7.

2. 2(v - 3)

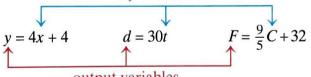
- 3. 7v + 4
- 4. 3v 12
- 5. -5(15 2v)

To evaluate a function rule, substitute the input value for the variable inside the parentheses.

What You'll Learn

To evaluate functions and complete input-output tables New Vocabulary function, function rule

Why Learn This?


The time it takes you to get to your destination is a function of how fast you travel. Your speed affects how long the trip will take.

A function is a rule that assigns to each input value exactly one output value. A function rule is an equation that describes a function.

You can use a function rule to evaluate a function. Functions have input variables and output variables. Examples of function rules appear below.

input variables

output variables

EXAMPLE Evaluating Functions

Juan begins his exercise walk from his friend's house which is 50 m from his own house. The function d = 3t + 50 gives the distance d in meters after t seconds that Juan is from his own house while walking. Find the output *d* for the input t = 10.

 \leftarrow Write the function. d = 3t + 50← Substitute 10 for *t*. d = 3(10) + 50d = 30 + 50← Simplify.

d = 80

The output d for the input t = 10 is 80. So, after 10 minutes of walking, Juan is 80 meters from his house.

🗸 Quick Check

1. The function $F = \frac{9}{5}C + 32$ converts temperatures in degrees Celsius, C to degrees Fahrenheit, F. Evaluate the function for C = 20.

An input-output table is useful to evaluate multiple values for a function. It also helps you organize data when the function represents a real-world situation.

EXAMPLE Input-Output Tables

2 The function $t = \frac{1}{2}m - 12$ gives the temperature t in a container in degrees Celsius m minutes before, at the start, and during an experiment. Use the function to make an input-output table for m = -2, -1, 0, 1, and 2.

Input <i>m</i> (mins)	Output t (temp)
-2	-13
-1	$-12\frac{1}{2}$
0	-12
1	$-11\frac{1}{2}$
2	-11

 $\leftarrow \frac{1}{2}(-2) - 12 = -13$ $\leftarrow \frac{1}{2}(-1) - 12 = -12\frac{1}{2}$ $\leftarrow \frac{1}{2}(0) - 12 = -12$ $\leftarrow \frac{1}{2}(1) - 12 = -11\frac{1}{2}$ $\leftarrow \frac{1}{2}(2) - 12 = -11$

🧭 Quick Check

2. Use the function $m = \frac{1}{3}n + 1$ to make an input-output table for n = -1, 0, 1, and 2.

To encourage recycling, some states require a five-cent deposit on drink containers. The total deposit you pay depends on how many containers you buy. You can describe this relationship with a function rule.

 $d = 0.05c \leftarrow \text{input variable } c = \text{number of containers}$ \uparrow output variable d = deposit

EXAMPLE Application: Recycling

3 **Recycling** Complete the table of input-output pairs for the function rule d = 0.05c, where d represents the deposit in dollars and c represents the number of containers.

Input c (number of containers)	Output <i>d</i> (dollars)	
6		$\leftarrow 0.05 \times 6 = 0.3$
12		$\leftarrow 0.05 \times 12 = 0$
24		$\leftarrow 0.05 \times 24 = 1$

Ouick Check

3. The deposit on a drink container is \$.10 in the state of Michigan. Use the function rule d = 0.1c. Make a table of input-output pairs to show the total deposits on 5, 10, and 15 containers.

Check Your Understanding

- 1. Vocabulary How are a function and a function rule related?
- 2. Explain how to evaluate a function for a given input value.
- 3. Number Sense If the input value is negative, is the output value of f = -4z + 12 always positive or always negative? Explain.
- 4. Complete the input-output table for the function f = 3 + n.

Input <i>n</i>	0	1	2	3
Output f	3			No. of Concession, Name

Homework Exercises

GO for Help		
For Exercises	See Examples	
5-10	1	
11-12	2-3	

For more exercises, see Extra Skills and Word Problems.

Use the function	rule $z = 2$	2x + 3. Find	l each output.
------------------	--------------	--------------	----------------

5. $x = 0$	6 . $x = -2$	7. $x = 2$
8. $x = 10$	9 . $x = -16.7$	

- 10. Energy The function rule E = 0.4h gives the total energy E in kilowatts the stereo uses during h hours. How much energy is used during 3 hr?
- 11. Hockey Copy and complete the table of input-output pairs for the function rule $t = \frac{n}{11}$. The variable *t* represents the number of teams formed in a hockey league. The variable *n* represents the number of people signed up for the league.

Input <i>n</i> (number of people)	Output t (number of teams)
44	
132	-
165	

- 12. The function rule p = 1.5 + 2m represents the taxi fare p in dollars for a ride that is m miles long. Make a table of input-output pairs to show the fare for rides of 2, 6, and 13 miles.
- 13. Guided Problem Solving Paint brushes cost \$1.79 each. The function rule c = 1.79p gives the cost c in dollars for p paintbrushes. Jackson has \$75.00 and must buy 27 paintbrushes and 2 gallons of paint which costs \$13.29 per gallon. How much change will he receive?
 - How much is the cost of the paintbrushes?
 - How much does the paint cost?
 - 14. Reasoning For what values of a and b will the function I = at + b give the input-output table below?

Input, t	1	2	3	4
Output, /	5	7	9	11

GPS

- **15.** Water Use The function $w = 40\ell$ describes the number w of gallons of water used to wash ℓ loads of laundry in a washing machine.
 - **a**. Find the value of w when $\ell = 6$. What does this represent?
 - **b.** The *domain* of a function is all possible input values. The *range* of a function is all possible output values. Which variable, w or ℓ , represents the domain in part (a)? Explain.
 - c. The input variable is also called the *independent variable*. The output variable is the *dependent variable*, because it depends on the input variable. Which is the dependent variable, w or ℓ ?
- 16. Writing in Math Find several solutions of the equation y = 3x 2. Explain how these solutions are related to input-output pairs for y = 3x - 2.

Copy and complete the table of input-output pairs for each function.

Input x	Output y	Input t	Output o
5		1	
7	1	2	
9		3	
11	80 C	· · · · · · · · · · · · · · · · · · ·	200

- **19.** Fruit smoothies cost \$1.50 each plus \$.50 for each fruit mixed into the smoothie. The function c = 1.5 + .5f gives the cost c of a smoothie with f fruits. Find the cost of a smoothie with 4 different fruits mixed in.
- 20. Challenge A furniture store charges a fee of \$30 to deliver furniture, plus \$2 per mile that it has to travel for the delivery. Write a function that describes this relationship where c represents total cost and m represents miles.

Practice

1

Gridded Response

- 21. An ad in the newspaper costs \$52 plus \$2.50 for each line of the ad. What is the cost in dollars of placing a 7-line ad?
- 22. Using variables, three consecutive even integers can be represented by n, n + 2, and n + 4. The sum of three consecutive even integers is -198. What is the middle integer?

Find the number of solutions of the equation.

23.
$$-3(x-2) + 1 = 2(4-x) - 1 - x$$

24. $3x + 7 = 2(x-3)$
25. $6x - 5 - 5x + 3 = 4\left(1 + \frac{1}{4}x\right)$
26. $x + 3.5(x-1) = 8x$