8-1

Translations

Check Skills You'll Need

1. Vocabulary Review In what *quadrant* is (-3, 5) located?

Name the coordinates of each point.

© CONTENT STANDARDS 8.G.1.a, 8.G.1.b, 8.G.1.c, 8.G.3

Vocabulary Tip

Each corner of a triangle is a *vertex*. The plural of vertex is *vertices*.

What You'll Learn

To graph and describe translations in the coordinate plane **New Vocabulary** transformation, translation, image

Why Learn This?

Translations are used in games and in the arts. You can use translations to plan a winning chess strategy or choreograph a figure-skating routine.

A transformation is a change in the position, shape, or size of a figure. A translation is a transformation that moves each point of a figure the same distance and in the same direction.

The figure you get after a transformation is an **image** of the original figure. To identify the

image of point A, use prime notation (A'). You read A' as "A prime."

EXAMPLE

Graphing a Translation

Multiple Choice If $\triangle PQR$ below is translated 6 units to the right and 3 units down, what are the coordinates of point P'? $\triangle P'(-1, -2)$ $\bigcirc P'(-2, 1)$ $\bigcirc P'(-2, -1)$ $\bigcirc P'(1, -2)$

Slide each vertex right 6 units and down 3 units. Label and connect the images of the vertices.

Quick Check

1. $\triangle JKL$ has vertices J(0,2), K(3,4), and L(5,1). Translate $\triangle JKL$ 4 units to the left and 5 units up. What are the coordinates of J'?

The answer is D.

Notice in Example 1 that $\triangle P'Q'R'$ is congruent to $\triangle PQR$. A translation of a figure preserves the side lengths and angle measures of the figure. You can use arrow notation to describe the translation. The translation of each point is shown below.

 $P(-5,1) \rightarrow P'(1,-2) \leftarrow \text{Read } P \rightarrow P' \text{ as "point } P \text{ goes to point } P \text{ prime."}$ $Q(-1,4) \rightarrow Q'(5,1)$ $R(-2,2) \to R'(4,-1)$

The arrow notation for the translation of the triangle is $\triangle PQR \rightarrow \triangle P'Q'R'.$

You can use arrow notation to write a general rule that describes a translation. For Example 1, $(x, y) \rightarrow (x + 6, y - 3)$ shows an ordered pair (x, y) and describes a translation to the right 6 units and down 3 units.

EXAMPLE Describing a Translation

2 Write a rule to describe the translation of the black triangle to the blue triangle.

Each point has moved 4 units to the right and 2 units down. So the translation adds 4 to the x-coordinate and subtracts 2 from the y-coordinate.

The rule is $(x, y) \rightarrow (x + 4, y - 2)$.

Quick Check

2. Write a rule that describes the translation shown on the graph at the right.

Check Your Understanding

Test Prep Tip

Draw arrows from each

to help you see the

translation.

original point to its image

- 1. Vocabulary A (transformation, image) is a change in the position. shape, or size of a figure.
- 2. Sports The graph at the left shows an ice skater moving across the ice. How far and in what direction does the skater move?

Graph each point and its image after the given translation.

- **4.** V(-4, 4), down 6 units **3.** T(1,3), left 2 units
- **5.** S(4,0), right 1 unit, down 3 units **6.** X(0, -2), right 7 units

Homework Exercises

GO for Help	
For Exercises	See Examples
7–10	1
11-14	2

For more exercises, see Extra Skills and Word Problems,

Copy each figure. Then graph the image after the given translation.

7. up 2 units

9. right 4 units, up 3 units

- 8. left 3 units, down 4 units $B \xrightarrow{y}$ $2 \xrightarrow{c}$ $A \xrightarrow{c}$ $-4 \xrightarrow{-2} O \xrightarrow{2} 4 \xrightarrow{x}$
- 10. left 2 units, up 1 unit

Write a rule that describes the translation shown on each graph.

GPS 15. G a 5 c •

15. Guided Problem Solving Suppose the figure at the right is translated 6 units to the right and 5 units down. Without graphing, what are the coordinates of the image points?

- What are the coordinates of the vertices?
- To translate to the right, do you add to or subtract from the *x*-coordinate?
- To translate down, do you add to or subtract from the *y*-coordinate?

D Inline Homework Video Tutor PearsonSuccessNet.com

Match each rule with the correct translation.

- **16.** $(x, y) \rightarrow (x 6, y + 2)$ **A.** $P(4, -1) \rightarrow P'(3, -6)$ **17.** $(x, y) \to (x + 3, y)$ **B.** $Q(3, 0) \rightarrow Q'(-3, 2)$ **18.** $(x, y) \rightarrow (x - 1, y - 5)$ **c.** $R(-2, 4) \rightarrow R'(1, 4)$
- **19.** Use graph paper to complete parts (a)-(e).
 - a. Draw a rectangle with vertices A(1,6), B(4,6), C(4,2), and D(1,2).
 - b. What are the lengths of the sides of rectangle ABCD? What are the angle measures?
 - c. Perform any translation of rectangle ABCD. Use arrow notation to describe your translation.
 - **d**. How do the lengths of the sides of rectangle A'B'C'D' compare with the lengths of the sides of rectangle ABCD? How do the angle measures compare?
 - e. Do you think that your answer to part (d) is true for any translation of a figure? Explain your reasoning.
- 20. Games The chessboard at the left shows four possible moves for the white knight. Write a rule to describe each move as a translation, using the knight's original position as the origin.
- 21. Writing in Math Suppose you translate a point to the left 1 unit and up 3 units. Describe what you would do to the coordinates of the original point to find the coordinates of the image.
- **22.** Challenge Graph the equation $y = \frac{1}{2}x$. Translate the line up 3 units. Describe the image.

Test Prep and Mixed Review BOD

23. Point A(2,3) is translated 2 units to the right and 4 units down. What **Multiple Choice** are the coordinates of point A'? \bigcirc (4,0) 0 (4, -1)

```
B (0, -1)
(0,0)
```

- 24. Javier drew a right triangle on graph paper with legs of length 9 and 12. He then drew squares as shown. What was the area of the square opposite the right angle?
 - \bigcirc 15 units² \oplus 81 units² \bigcirc 144 units²
 - \bigcirc 225 units²

Graph each linear equation.

25. $y = \frac{1}{3}x$

- **26.** y = -5x + 2

Practice

Iline lesson quiz, PearsonSuccessNet.com

See Lesson

4-2

GO

for Help

For Exercises

25-26