Class___

Exploration Lab

Chapter 13 Forces in Fluids

Determining Buoyant Force

In this lab, you will analyze recorded data to determine the buoyant forces acting on objects.

Problem How does the buoyant force determine whether an object sinks?

Materials

• string

- sponge
- rock
- paper towels
- spring scale

• plastic tub

- 100-g standard mass
- can
- wooden block tied to a fishing weight 250-mL graduated cylinder

Skills Measuring, Calculating

Procedure

1. Tie one end of the string around the rock. Tie the other end to the spring scale. Suspend the rock from the spring scale and measure and record its weight in air in the data table.

DATA TABLE

Object	Weight in Air (N)	Apparent Weight in Water (N)	Buoyant Force (weight in air – apparent weight in water, N)	Volume of Displaced Water (mL)	Weight of Displaced Water (N)
Rock					
100-g standard mass					
Wood block with fishing weight					

- **2.** Place the can in an upright position in the plastic tub. Completely fill the can with water. Wipe up any water that has spilled into the tub. CAUTION: Wipe up any water that spills on the floor to avoid slips and falls.
- 3. Lower the rock into the water until it is completely submerged. Record in the data table the apparent weight in water of the submerged rock. Remove the rock from the can.
- 4. Without spilling any water, carefully remove the can from the tub. Pour the water from the tub into the graduated cylinder. Record in the data table the volume of displaced water.
- 5. Repeat Steps 1 through 4, first with the 100-g standard mass and then with the wooden block that is tied to a fishing weight.
- 6. To determine the buoyant force on each object, subtract its apparent weight in water from its weight in air. In the data table, record these values.

0

Name	Class	Date			
7. Calculate the weight o 1.0 mL of water has a with these weights.	f the water that each object di veight of 0.0098 N.) In the dat	splaces. (<i>Hint:</i> ta table, record			
Analyze and Conclude					
1. Observing What force the weight of each obj	e is responsible for the differe ect in the air and its apparent	ence between weight in water?			
2. Analyzing Data How	is the buoyant force related to	o the weight			
of water displaced?					
3. Forming Operational describe two ways you	Definitions Define buoyant : I can measure it or calculate it	force and t.			
4. Drawing Conclusions float, using the terms <i>l</i>	Explain what causes an obje puoyancy, weight, force, density,	ct to sink or to and <i>gravity</i> .			