\qquad Date \qquad Class \qquad

Lesson Outline

Acceleration

A. Acceleration-Changes in Velocity

1. \qquad is a measure of the change in velocity during a period of time.
2. An object accelerates when its velocity changes as a result of increasing speed, decreasing speed, or a change of \qquad .
3. Like velocity, acceleration has a direction and can be represented by a(n) \qquad
4. An acceleration arrow's direction depends on whether the
\qquad increases or decreases.
a. When the velocity of an object is increasing, the acceleration arrow points in the
\qquad direction as the velocity arrows.
b. When the velocity of an object is decreasing, the acceleration arrow points in the
\qquad direction as the velocity arrows.
5. When an object changes direction, the acceleration arrows point to the
\qquad of the curve along which the object is moving.
B. Calculating Acceleration
6. \qquad is a change in velocity during a time interval divided by the time interval during which the velocity changes.
7. If SI units are used in the acceleration equation, then acceleration has units of \qquad _.
8. If acceleration is negative, then it is \qquad the direction of motion.
C. Speed-Time Graphs
9. $A(n)$ \qquad can be used to show how speed changes over time.
10. A speed-time graph has \qquad plotted on the horizontal axis, which is the x-axis. \qquad is plotted on the vertical axis, which is the y-axis.
11. The speed-time graph for an object at \qquad is a horizontal line at $y=0$.
\qquad Date \qquad Class \qquad

Lesson Outline continued

4. If an object is moving at \qquad speed, its speed-time graph is a horizontal line above the x-axis.
5. The speed-time graph for an object that is speeding up is a line that slants
\qquad toward the right side of the graph.
6. If an object is slowing down, its speed-time graph is a line that slants
\qquad toward the right side of the graph.
7. Speed-time graphs do not show what happens when velocity changes as the result of a change of \qquad _.
D. Summarizing Motion
8. \qquad can be described by one's direction and distance from a reference point.
9. Distance and displacement can be compared to find one's average \qquad .
10. Speed and direction describe one's \qquad .
11. If one's velocity is \qquad that person is accelerating.
