\qquad Date \qquad Class \qquad

Solve for Acceleration

Acceleration is a measure of how much the velocity of an object changes in a unit of time. Acceleration is measured in units such as $\mathrm{m} / \mathrm{s}^{2}$.

Acceleration is the change in velocity during a time interval divided by the time interval during which the velocity changes. This can be shown by the equation below, where $a=$ acceleration, $v_{f}=$ final speed, $v_{i}=$ initial speed, and $t=$ total time.

$$
a=\frac{\left(v_{f}-v_{i}\right)}{t}
$$

Pablo is running sprints. At $\mathbf{1 0}$ seconds, his speed is $\mathbf{2} \mathrm{m} / \mathrm{s}$. At $\mathbf{2 0}$ seconds, his speed is $\mathbf{4} \mathrm{m} / \mathrm{s}$. What was his acceleration during this time? To solve this problem, follow the steps below.

Step 1 Identify the variables given in the problem.
Subtract to find the time interval.
$v_{f}=\mathbf{4 m} / \mathrm{s}$
$v_{i}=2 \mathrm{~m} / \mathrm{s}$
$t=\mathbf{2 0} \mathrm{s}-\mathbf{1 0} \mathrm{s}=\mathbf{1 0} \mathrm{s}$

Step 2 Substitute the known values to solve the equation.
You are solving for a, the acceleration.
$a=\frac{\left(v_{f}-v_{i}\right)}{t}$
$a=\frac{(\mathbf{4} \mathrm{m} / \mathrm{s}-\mathbf{2 m} / \mathrm{s})}{\mathbf{1 0} \mathrm{s}}$
$a=0.2 \mathrm{~m} / \mathrm{s}^{2}$

Practice

1. After 30 s , a runner is sprinting at 3 m / s. But, 10 s later, the runner is sprinting at $3.8 \mathrm{~m} / \mathrm{s}$. What is the runner's acceleration during this time?
2. A car was moving at $14 \mathrm{~m} / \mathrm{s}$. After 30 s , its speed increased to $20 \mathrm{~m} / \mathrm{s}$. What was the acceleration during this time?
3. Kiko is coasting on her bicycle down a hill. After 3 s , her speed is $10 \mathrm{~m} / \mathrm{s}$. After 8 s , her speed is $25 \mathrm{~m} / \mathrm{s}$. What is her acceleration during this time?
4. Han's younger sister is riding her tricycle in a straight line. After 3 s , her speed is $0.5 \mathrm{~m} / \mathrm{s}$. After 5 s , her speed is $1.5 \mathrm{~m} / \mathrm{s}$. What is her acceleration during this time?
