Nuclear Decay of Element Z

Element Z has a half-life of one week. (What do you think this means?_____) Use the plotted grid below to trace the decay of a 256-gram sample of element Z over a 10-week period. Each box on the grid represents 1 gram of element Z. After you complete each step, answer the following question.

Week	Direction	Question
1	Use a pencil to draw a large X through ½ of the boxes on the <i>left side</i> of the grid.	How many grams of element Z decayed?
2	Use a <i>different colored pencil</i> to draw a large X through $\frac{1}{2}$ of the <i>remaining</i> boxes.	How many grams of element Z remain now, after 2 weeks?
3	Use your <i>pencil</i> to <i>shade in ½</i> of the <i>remaining</i> boxes.	How many grams of element Z are left?
4	Repeat step 3 using the colored pencil.	How many grams of element Z remain?
5	Use a pencil to draw an X in ½ of the <i>remaining</i> boxes.	How many grams of element Z remain?
6	Repeat step 5 using the colored pencil.	How many grams of element Z remain?
7	Use your <i>pencil</i> to draw a <i>circle</i> in ½ of the <i>remaining</i> boxes.	How many grams of element Z remain?
8	Repeat step 7 using the colored pencil.	How many grams of element Z remain?
9	Shade in ½ of the <i>remaining box</i> with your pencil.	How much of element Z remains?
10	Repeat step 9 using the colored pencil.	How much of element Z remains?

Analysis:

On a separate sheet of graph paper, make a line graph that shows the decay of element Z over a 10-week period. Use your answers to the above 10 questions as your data. Plot weeks on the X axis and grams of element Z on the Y axis.

On the back of the graph, write answers to the following:

- 1. Write a sentence describing what your graph shows.
- 2. Describe "half-life" in your own words.
- 3. Research and find out!: What is carbon-dating? Please explain why/how scientists use the technique of carbon-dating and what this activity has to do with it.

Nuclear Decay of Element Z

Element Z has a half-life of one week. (What do you think this means? <u>answers will vary ... discuss ideas</u>. Use the plotted grid below to trace the decay of a 256-gram sample of element Z over a 10-week period. Each box on the grid represents 1 gram of element Z. After you complete each step, answer the following question.

Week	Direction	Question
1	Use a pencil to draw a large X through ½ of the boxes on the <i>left side</i> of the grid.	How many grams of element Z decayed? 128 g
2	Use a <i>different colored pencil</i> to draw a large X through $\frac{1}{2}$ of the <i>remaining</i> boxes.	How many grams of element Z remain now, after 2 weeks? 64 g
3	Use your <i>pencil</i> to <i>shade in ½</i> of the <i>remaining</i> boxes.	How many grams of element Z are left? 32 g
4	Repeat step 3 using the colored pencil.	How many grams of element Z remain? 16 g
5	Use a pencil to draw an X in ½ of the <i>remaining</i> boxes.	How many grams of element Z remain? 8 g
6	Repeat step 5 using the colored pencil.	How many grams of element Z remain? 4 g
7	Use your <i>pencil</i> to draw a <i>circle</i> in ½ of the <i>remaining</i> boxes.	How many grams of element Z remain? 2 g
8	Repeat step 7 using the colored pencil.	How many grams of element Z remain? 1 g
9	Shade in ½ of the <i>remaining box</i> with your pencil.	How much of element Z remains? 0.5 g (½ g)
10	Repeat step 9 using the colored pencil.	How much of element Z remains? 0.25 g (¼ g)

Analysis:

On a separate sheet of graph paper, make a line graph that shows the decay of element Z over a 10-week period. Use your answers to the above 10 questions as your data. Plot weeks on the X axis and grams of element Z on the Y axis.

On the back of the graph, write answers to the following:

- 1. Write a sentence describing what your graph shows.
- 2. Describe "half-life" in your own words.
- 3. Research and find out!: What is carbon-dating? Please explain why/how scientists use the technique of carbon-dating and what this activity has to do with it.

Decay of Element Z Key

