\qquad

- Percent Change of Dimensions

Dilation: Add the percent of increase to 100%.

Reduction: Subtract the percent of decrease from 100\%.

Scale factor: To find the scale factor, convert the dilation or reduction percent to a decimal.

Example: The dimensions of a square are increased 20\%. By what percent is the area increased?

1. The dilation is $100 \%+20 \%=120 \%$.
2. The scale factor is $120 \%=1.2$.
3. Square the scale factor to determine the relationship between the two areas. (Remember: Area is the product of two dimensions.) $(1.2)^{2}=1.44$
4. Change into percent: $1.44=144 \%$. We can say that the area of the larger square is 144% of the area of the smaller square.
5. This means that the area is increased 44%. $(144 \%-100 \%=44 \%)$

Practice:

1. Patrick reduced the size of a photograph by 30%.
a. What percent of the original size is the reduction? \qquad
b. What is the scale factor from the original to the reduction? \qquad
c. By what percent was the area of the photograph reduced? \qquad
2. A square is dilated 160%.
a. What is the scale factor of the dilation? \qquad
b. By what percent would the area increase? \qquad
3. Maggie's blanket uniformly shrunk 10% when it was put into the dryer.
a. What is the scale factor of the reduction? \qquad
b. The area of the blanket is what percent of its original area? \qquad
c. By what percent was the area of the blanket reduced? \qquad

- Multiple Unit Multipliers

> Use two unit multipliers to convert two different units.

Example:

Convert 440 yd per minute to miles per hour:

$$
\frac{440 \mathrm{ver}}{1 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \cdot \frac{1 \mathrm{mi}}{1760 \mathrm{yd}}=\frac{26,400 \mathrm{mi}}{1760 \mathrm{hr}}=15 \mathrm{mph}
$$

Use two unit multipliers to convert units of area.

Example:

Convert 288 square feet (ft^{2}) to square yards $\left(\mathrm{yd}^{2}\right)$:

$$
288 \mathrm{ft}^{2} \times \frac{1 \mathrm{yd}}{3 \mathrm{ft}} \times \frac{1 \mathrm{yd}}{3 \mathrm{ft}}=\frac{288 \mathrm{yd}^{2}}{9}=36 \mathrm{yd}^{2}
$$

Use three unit multipliers to convert units of volume.

Example:

Convert 1107 cubic feet (ft^{3}) to cubic yards $\left(\mathrm{yd}^{3}\right)$:

$$
1107 \mathrm{ft}^{3} \times \frac{1 \mathrm{yd}}{3 \mathrm{ft}} \times \frac{1 \mathrm{yd}}{3 \mathrm{ft}} \times \frac{1 \mathrm{yd}}{3 \mathrm{ft}}=\frac{1107 \mathrm{yd}^{3}}{27}=41 \mathrm{yd}^{3}
$$

Practice:

1. Examine problems $b-f$.
a. For which problems will you need to use two unit multipliers?

Three unit multipliers?
\qquad
b. 24 yards per minute to feet per second \qquad
c. 32 dollars per hour to cents per minute \qquad
d. 12 sq ft to sq in. \qquad
e. $1,000,000,000 \mathrm{~cm}^{3}$ to m^{3} \qquad
f. 3456 cubic inches to cubic ft \qquad

- Formulas for Sequences

$$
\begin{aligned}
& 3,6,9,12, \ldots \text { Formula: } a_{n}=3 n \\
& 2,4,8,16,32, \ldots \text { Formula: } a_{n}=2^{n} \\
& 3,5,7,9, \ldots \text { Formula: } a_{n}=2 n+1
\end{aligned}
$$

To find a formula for a sequence, relate each term (a) with the number of the term (n.)

n	1	2	3	4
a	3	5	7	9

To find a term, double the number of the term and then add 1.

Practice:

1. $1,4,9,16,25, \ldots$
a. What is the formula for the above number sequence?
b. What is the next number? \qquad
2. $2,4,6,8, \ldots$
a. What is the formula for the above number sequence?
b. Find the 10th term. \qquad
3. The terms of the following sequence are generated with the formula $a_{n}=n^{n}$. Find the next number in the sequence.

$$
1,4,27,256, \ldots
$$

4. The terms of the following sequence are generated with the formula $a_{n}=2 n-1$.

$$
1,3,5,7,9, \ldots
$$

What is the 12th number in the sequence?

- Simplifying Square Roots

> The Product Property of Square Roots $$
\sqrt{a b}=\sqrt{a} \sqrt{b}
$$

We can simplify square roots by removing perfect-square factors from the radical. We show two ways to simplify $\sqrt{12}$:

First Method:
Find the prime factors.

$$
\begin{aligned}
\sqrt{12} & =\sqrt{2 \cdot 2 \cdot 3} \\
& =\sqrt{2 \cdot 2} \sqrt{3} \\
& =2 \sqrt{3}
\end{aligned}
$$

Second Method:
Find the perfect sqare factor.

$$
\begin{aligned}
\sqrt{12} & =\sqrt{4 \cdot 3} \\
& =\sqrt{4} \sqrt{3} \\
& =2 \sqrt{3}
\end{aligned}
$$

When using prime factors to simplify, look for pairs of identical factors. Each pair is a perfect square.

Example: Simplify $\sqrt{600}$.

FIRST METHOD:
Step 1: Factor 600.

$$
\sqrt{600}=\sqrt{2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5}
$$

Step 2: Group pairs of identical factors.
$\sqrt{2 \cdot 2} \cdot \sqrt{5 \cdot 5} \cdot \sqrt{2 \cdot 3}$

Step 3: Simplify perfect squares.
$2 \cdot 5 \cdot \sqrt{2 \cdot 3}$
Step 4: Multiply.
$10 \sqrt{6}$

Practice:

Simplify if possible.
\qquad
3. $\sqrt{500}$ \qquad
5. $\sqrt{480}$ \qquad
2. $\sqrt{80}$
4. $\sqrt{1372}$ \qquad
6. $\sqrt{30}$ \qquad

- Area of a Trapezoid

Formula to Find the Area of a Trapezoid

$$
A=\frac{1}{2}\left(b_{1}+b_{2}\right) \cdot h
$$

We read this formula: Area equals $\frac{1}{2}$ times the sum of the bases times the height.
The formula means: Multiply the average of the bases times the height.
Example: Find the area of the trapezoid.
Step 1: Add base 1 and base 2.
$7+9=16$

Step 2: Multiply the sum by $\frac{1}{2}$ or divide by 2.
The average of the bases is $8 \mathrm{ft} . \quad \frac{1}{2}(16)=8$
Step 3: Multiply the average of the bases by the height.

$$
8(4)=32
$$

The area of the trapezoid is 32 square feet.

Practice:

Find the average of the bases and the area of each trapezoid.
1.

2.

3.

5.

4.

6.

- Volumes of Prisms and Cylinders

- To find the volume of a prism or a cylinder perform these two steps:

1. Find the area of the base.
2. Multiply the area of the base times the height.

Practice:

1. Find the volume of a cylinder with a radius 5 ft and a height 10 ft .
(Use 3.14 for π.) \qquad
2. Find the volume of a rectangular prism with length 6 in., height 4 in., and width 4 in . \qquad
3. Find the volume of this trapezoidal prism.

4. Find the volume of this triangular prism.

- Inequalities with Negative Coefficients

- Recall that we solve an inequality the way we solve an equation. However, if we multiply or divide by a negative number, we reverse the direction of the inequality.
- We can graph on a number line all the numbers that make the inequality true.

Example: Solve and graph: $-6(x-3)>6(x-3)$

Step
$-6(x-3)>6(x-3) \quad$ Given equality
$-6 x+18>6 x-18 \quad$ Distributive Property
$-12 x+18>-18 \quad$ Subtracted $6 x$ from both sides
$-12 x>-36 \quad$ Subtracted 18 from both sides
$\boldsymbol{x}<3 \quad$ Divided both sides by -12 and reversed the comparison symbol.

Practice:

Solve. Then graph the set of solutions.

1. $2 x-5 x+4 \leq 10$
2. $4(x-1)>8$ \qquad
3. $11-2 x \geq 3 x+16$ \qquad
4. $2(x-2) \geq 5(x+1)$ \qquad
5. $4(x+2)<5 x-1$ \qquad

- Products of Square Roots

Property of Square Roots

$\sqrt{a b}=\sqrt{a} \sqrt{b}$

This property means that square roots can be factored.
This property also means square roots can be multiplied.
This property can help you solve problems with square roots.
Simplify: $\sqrt{5} \cdot \sqrt{5}$

$$
\begin{aligned}
& \sqrt{5} \cdot \sqrt{5}=\sqrt{25} \\
& \sqrt{25}=5
\end{aligned}
$$

Simplify: $\sqrt{8} \cdot \sqrt{18}$

$$
\begin{aligned}
& \sqrt{8} \cdot \sqrt{18}=\sqrt{144} \\
& \sqrt{144}=12
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Simplify: } & \sqrt{10} \cdot \sqrt{14} \\
& \sqrt{10} \cdot \sqrt{14}=\sqrt{140} \\
& \sqrt{140}=\sqrt{2} \cdot 2 \cdot 5 \cdot 7 \\
& \sqrt{140}=\sqrt{2^{2}} \cdot \sqrt{5 \cdot 7} \\
& \sqrt{140}=2 \sqrt{35}
\end{array}
$$

Practice:

1. $\sqrt{8} \sqrt{2}$ \qquad
2. $\sqrt{12} \sqrt{3}$ \qquad
3. $\sqrt{27} \cdot \sqrt{49}$ \qquad 4. $\sqrt{3} \cdot \sqrt{6}$ \qquad
4. $\sqrt{3} \cdot \sqrt{3}$ \qquad 6. $\sqrt{5} \cdot \sqrt{50}$ \qquad

- Transforming Formulas

Standard formulas are expressed with one variable isolated. You can transform, or rearrange, formulas before you solve a problem when you want to isolate a different variable.

Example: The formula for distance can be transformed to solve the equation to find the time:

$$
\begin{array}{ll}
\begin{array}{l}
\text { Step } \\
d=r t
\end{array} & \text { Justification } \\
\frac{d}{r}=\frac{r t}{r} & \text { Distance formula } \\
\frac{d}{r}=t & \text { Simplifed both sides by } r \\
t=\frac{d}{r} & \text { Symmetric property }
\end{array}
$$

Example: Solve for $x: w=x+b$
$w=x+b$
Equation
$w-b=x$
Subtracted b from both sides
$x=w-b$
Symmetric property of equality

Practice:

1. Solve $A=I w$ for width. \qquad
2. Solve $c=\pi d$ for the diameter. \qquad
3. Solve $c^{2}=a^{2}+b^{2}$ for a. \qquad
4. Transform this formula to solve for $c . a=b c$ \qquad
5. Solve $d=r t$ for time. Then use your transformed formula to solve the following problem. Jan traveled a distance of 90 miles at the rate of 40 mph . How long did it take her to travel the 90 miles?

Name \qquad

- Adding and Subtracting Mixed Measures Polynomials

To add mixed measures, combine the units separately and then make adjustments.
Example: 13 minutes 41 seconds

$$
\frac{+9 \text { minutes } 31 \text { seconds }}{22 \text { minutes } 72 \text { seconds }}=23 \mathrm{~min} 12 \mathrm{sec}
$$

When subtracting, you may need to regroup.

Polynomials are algebraic expressions with one or more terms. Monomials (one term), binomials (two terms), and trinomials (three terms) are types of polynomials.

Practice:

1. Add:
a. $\quad 2 \mathrm{hr} 25 \mathrm{~min} 18 \mathrm{sec}$
$+4 \mathrm{hr} 51 \mathrm{~min} 22 \mathrm{sec}$
b. $\quad 3 \mathrm{ft} 8 \mathrm{in}$.
+4 ft 10 in .
2. Subtract:
a. $\quad 9 \mathrm{hr} 12 \mathrm{~min} 18 \mathrm{sec}$

- 2 hr 21 min 45 sec
b. 10 lbs 3 oz
-4 lbs 12 oz

3. Identify each polynomial below as a monomial, binomial, or trinomial.
a. $3 x+7 y-2$
b. $x+4 y+4$
\qquad
\qquad
c. $4 x y^{3}$
d. $x^{2}-2 y$
